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Effects of local feedback on dispersion of electrical waves in the cerebral cortex
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This paper generalizes an existing continuum model of the large-scale electrical activity of the brain by
incorporating local feedback. The model is first reformulated by parametrizing neuronal function in more detail
and we then show that only four broad classes of local feedback are consistent with general physiological
constraints. The corresponding linear dispersion relations are found to contain additional modes as a result of
feedback. It is shown that each feedback class can produce lightly damped or undamped oscillatory modes at
frequencies similar to those seen in electroencephalography, although not all combinations of type and speed
of feedback result in oscillatory behavior. Three kinds of lightly damped resonances are found, each with
distinctive frequency characteristics. The effect of feedback on other roots is also described.
[S1063-651%9905901-2

PACS numbd(s): 87.22.Jb, 87.22.As, 87.16e

I. INTRODUCTION works were those of Wilson and Cowégh], Nunez[2], and
van Rotterdamet al. [3], followed by generalizations by

Continuum approximations offer a means of modeling theNunez[4], Jansen and Rf&], Wright and co-worker§6—8|,
large-scale electrical activity of the brain and current modelsand Jirsa and Hakel®,10. Some sought to account for the
incorporate the principal features of the brain’s structure andgjeneral characteristics of EEG, while others made a connec-
physiology, including distinct neural populations, nonlineari-tion with cognition and behavior.
ties, and the conduction velocities of impul$gés-10. How- A recent continuum model, proposed by Robinsaral.
ever, feedback has not previously been considered in sudh 1], treated the propagation of neuronal activity between
models, despite being a demonstrable feature of brain physieurons using a wave equation. This approach, when com-
ology and a potential reason for the periodic appearance dfined with a model of transmission within neurons including
electrical signals recorded from the brain. The purpose ohonlinear elements, was found to facilitate both analytical
this paper is(a) to find a way of categorizing the many po- and numerical modeling of electrical activity in two dimen-
tential forms of local feedback an(th) to examine the con- sions and has been used for estimating two-point correlation
sequences of each kind of feedback. This is done in the corfunctions[12] and in studying global cortical dynamif$3].
text of a recent continuum model of brain electrical activity =~ This paper extends the model of Robinsaral. to incor-
[11,12. porate more physiological detail. We are particularly con-

Brain activity causes potentials on the scalp and recordeerned with the many metabolic and biophysical processes
ings of these potentials, called electroencephalogramgvolved in chemical transmission between neurons and the
(EEGS, are used as a measure of brain function. EEGs corresulting changes in membrane properties, each of which has
tain spatial and temporal features that are sufficiently consishe effect of modulating the responsiveness of neurons. The
tent that correlations can be made with mental state; howapproach adopted here is to consider them as instances of
ever, the correlations are based on coarse parametrization laical feedback. The goal is to find tractable representations
the EEGs so their specificity is poor. If, with the help of a of these feedbacks that are sufficiently general to cover the
model, EEGs could be quantified more in terms of underlynumerous physiological possibilities. A further goal is to
ing anatomical and physiological quantities, their value as &haracterize the classes of feedback through their linear dis-
probe of brain function would be greatly enhanced. persion relations.

In modeling EEGs there is an abundance of anatomical One likely result of feedback in cortical models is to in-
and neurophysiological information that can be drawn uponduce resonances that may be of relevance to the modeling of
although it must be understood that the huge number of nelEEGs. This is in contrast to previous versions of our model
rons in the human brain~¢10™) and their intricate structure [11,12 which lacked feedback and showed no spectral peaks
and interconnections preclude modeling the whole cortexypical of EEGs[4] when driven by wideband noise. While
down to the scale of individual neurons. An alternative is tothe possibility also exists of subcortical generators for EEG
use continuum equations that average over times and digomponent$14], resonances induced by local feedback may
tances much less than are characteristic of EEGs. Early suetiso affect the signals recorded from the cortex and scalp. As

an application of the classification and characterization of
feedbacks, we look at the circumstances in which feedback

*Electronic address: rennie@physics.usyd.edu.au leads to resonances.
Electronic address: robinson@physics.usyd.edu.au Section Il briefly reviews the model of Robinsat al.
*Electronic address: jjw@mhri.edu.au [11]. Section IIl describes the general approach by which
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feedback is introduced and identifies just four distinct classes TABLE |. Parameters for the human cortex, based it and
of feedback. The dispersive characteristics of the differenthe additional assumption&N,=3N;,=5000, |s;|=4s,,Q¢;"
classes are described in Sec. IV. In Sec. V implications for=200 s*, 1¢;=0.1, andf,;=0.015 V.

electrocortical modeling are discussed.

Parameter Value
Il. BASIC CORTICAL MODEL Nee 4826
This section outlines the model that is the basis of the Eei 1;0
subsequent sections. First it briefly reviews the model as it es
appeared in previous wofk—8,11,12, with some notational Nie 4789
changes that allow us to incorporate feedback. We then out- Ni 166
line the steady state solutions and the dispersion relations Nis 466
that result. Se 20x10°° Vs
s -8.0x10°% V s
A. Basic equations ;55 2.0x 1816 Vs
Neurons are diverse and intricate in their structure and jlﬁ 200 st
function; however, their density is such that at scales of max 200 st
greater than a few tenths of a millimeter it is valid to ap- o 0.005 V/
proximate the cortex as a homogeneous continuum. Several 0. 0.015 V
continuum models have been propo$td12. The cortex is ve" oms!t
commonly assumed to be two dimensional, which is justified ; 0.084 m
by its thinnesg2—5 mm in humanscompared to its circum- rie 0 '0001 m

ference (~-600 mm).

Another assumption common to continuum models is that
the properties at any point are simply the average of those of . . . . . .
the I[D)Oppulation of re)('glpneurons in tﬁgvicinity. ngever, oneandsp’ which is physiological or functional in naturly, is
distinction between neurons is maintained: Some release the mean humber of connecthns from. heurons of tppe
citatory chemical transmitters at their terminals while others~ €,i,s on a neuron of typ@=g,i ands; is the size of the
releasenhibitory transmitters. The effect of the former is to

impulse response associated with synapses of tppe
depolarize the target neuron and make it more likely to fire.=€i,S- The latter is the time integral of the perturbation to
while the latter have the opposite effect.

the transmembrane potential, as measured at the synapse.
The operation of neurons consists of four stages: combiT able | lists representative values of these factors, which are

nation of all incoming activities, transmission of summed{S€d in later numerical results. Note thgtis negative in

activity to the main body of the neuron, consequent modulak€€Ping with its inhibitory character and is greater in mag-

tion of the neuron’s level of activity, and propagation to nitude thans, to reflect experimental evidence betfds5].

neighboring neurons. The first of these processes, sometimEioWwever, the parameters can be considered arbitrary in the
referred to as spatial summation, is the combination of jmPresent context, as we are principally concerned with general

pulses arriving from other locations in the cortex and fromr€sults. . . .
deep within the brain. This takes place in the inpuden- _ Each pulse arriving at a synapse causes a brief localized
dritic part of the neuron. The dendrites are fibers projectind"créase in membrane conductivity, leading to a perturbation
from the main body of the neuron, which serve to increas® several millivolts in the potential across the membrane.

the neuron’s receptive area for connecti¢sgnapsesfrom Each perturbation spreads through the dendritic tree and
other neurons. We usg(r,t) and &(r,t) to represent the reaches the body of the neuron with some attenuation and
. 7 ] L

excitatory and inhibitory activity reaching a particular point 129- Both depend on the distance of the synapse from the cell
from other points in the cortex, expressed as a rate of imPody; a factorle; can be used to represent the average at-
pulses oraction potentials(rather than being normalized as tenuation and convolution d?; with a unit-area function

in our previous worK11]). For this reason the ranges ¢f _L(t) can be.used to represent Iag..Thlls results in the follow-
are limited by the maximal rate at which action potentialsiNd €xpression for the net depolarization at the body of the

can be generate@T™, so that G, <QI™. Activity WO classes of neurons:

¢(r,t) also reaches the cortex from subcortical sites. The

net effectsP, ; on excitatory and inhibitory neurons are sums o ) e
of cortical and subcortical contributions Ve,i(r't)zle,ij_mL(t_t )Pe,i(r,t")dt 2)
Pe(r!t) = Neese¢e(rut) + NeiSi ¢i(rlt) + Ne§s¢s(rat)v
(13 =leiL(@Pey(r,b), 3

Pi(r,t) =NieSede(r,t) + Njisidi(r,1) + NisSs (1, 1). o , o
(1b)  where the symbol® indicates convolutions of the kind in

Eq. (2) andL(7) is a non-negative function that is zero for
Each of the coupling strengths in Eq4) has two com- 7<0 and has unit area. Experiments have suggested the fol-

ponentsN,,, which is anatomical or structural in character, lowing approximation for(7):
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ap g
—aT_ o= BT #+ 4
L(r)= ,B—a(e e P, a#p 4

a’re” T, a=p, (5)

for 7=0, andL(7) =0 otherwise[16]. The time constants
1l/a and 1B are of order 5 ms, which is greater than the
duration of an action potential, so the proc€8sis some-
times described as temporal summation, in contrast to the

spatial summation in Eqg1). 0 . . . s
In the absence of synaptic input, the transmembrane po- 0 20 40 _160 80 100
tential of a neuron tends to a resting value of about 05 (s7)

—70 mV with respect to the exterior of the cell. For sim-
plicity, this offset is omitted from Eq(3) and from all sub- line) for the parameters in Table | and(r,t)= .= const. The

sequent expressions involving potentials. corresponding results for the other variables are qualitatively simi-
The transmembrane potentM}; at the body of the neu- . P g q y

ron determines the neuron’s output firing rate. An outgoing

pulse is triggered whenevéf,; reaches a threshold, so the gro these, steady state solutions can also be obtained, as
response probability has the form of a step function. How+gp Jinear dispersion and stability propertjad].

ever, as we are considering population behavior and using a
continuous variable to describe neuronal output, we take the
response function to have a smooth transition from 0 to a
maximum Qg'™, with a width that reflects the variation of ~ When all derivatives are set to zero amd(r,t)= ¢
threshold levels encountered in real populations of neurons: const in Egs.(1), (3), (6), and(8), we find Ve ;=l¢ P,
We could assume the distribution of thresholds to be norma®nd ¢¢ ;= Qe i, giving

with a mean off,; and a standard deviation of,;, so the

FIG. 1. Steady state solutions fQr, (solid line) andQ; (dotted

B. Steady state solutions

response function would be an error function; however, it is Ve=le(NeeSeQet NeiSi Qi+ NesSsbs), (10
more convenient and consistent with previous wdr—-12 1N e LN
to adopt the following relation betweevi,; and the output Vi=li(NieSeQeNiiSi Qi + NisSsebs), (1)
firing rate Qg : max
B e,i
o Qo= Tho CVer— boploa] 2
Qe,i(r,t)= : (6)

1+exg —C(Vei— bei)l0eil’ Figure 1 showsQ,; as a function of¢ for a typical case.

For giveng, there are two solutions for eith€, or Q; with
Clow firing rates and one high firing rate solution wi@ ;
~Qg:™ (not shown [11], but as the control parametey is
Qe increased a point is reached where the two low firing rate
sze,iZ(C/O'e,i)Qe,i(l_Qe,i/Qg,lia : (7)  solutions merge and vanigii1]. The high firing rate solu-
&l tions are not of concern here as we are only interested here in
; ; max_ ~ ~max _ the linear dynamics of the system at the low firing rates more
Wr:"Ch :gia /m\/agx;nluge,i _tr(l:%e'i /4/(;‘3 ét Vei=be, t\Ne typically observed in the brain. It was established previously
choos ™ 81 so thadQ,; /dVe,i approximates a [11] that only the lower of the two low firing rate solutions is

Gaussian and ha? standard d?"'amﬂ- . . stable, so that is the one we will be concerned with below.
The last stage in the operation of neurons is the transmis-

sion of impulses along output fibefaxons to other syn-
apses. In the continuum approximation this is usually as-

which closely approximates an error function. The derivativ
of Eq. (6) with respect toV;, required below, is

C. Basic linear dispersion relation

sumed to be isotropic. It has been shopil] that this The linear dispersion relation is a useful starting point for
propagation of activity through the cortex can be describedhe investigation of the dynamics of our model and its deri-
by the damped wave equations vation is straightforward. First Ed6) is linearized about a
fixed pointQ{?), giving
De,ithe, i, )=Qe,(r1), ) .
) Qe (M) =Q +pei(Vei(r,)-VE), (13
1 9 2
ei=| ot o E+l—r§V2 , (9  wherep,, is defined by Eq(7). Fourier transformation of
Yeii Ye,i Egs.(1), (3), (8), and(13) then gives
wherev is the axonal conduction velocity,; are the char- Py(k,®)=NgeSedet NgiSidi + NgsSsbs (14
acteristic ranges of axons, and =v/r.;.
Together, Egs(1), (3), (6), and(8) represent a complete Vy(k,0)=lL(w)Py(k,0), (15

set of equations for the dynamics of the variables
Pei Ve, Qei, andeg;, of which only Eq.(6) is nonlinear. Qq(k,w)=pqVqy(k,w), (16
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Dg¢q4(k,0)=Qq(k, o), (17 When both random connectivity and the local inhibition
approximation are assumed, the transfer function reduces to
with
bel ps=Gesl/[De(L ™= Gji) — Gedl- (29
Dy=(1—iwlyy)?+k%? ¥;, (18

This can be further simplified whe@;;~0 to give
Lw)=[A-iela)d-ie/B)] ™, (19 Bel $s=Gesl[L {(@)De(k,0)~Geel.  (30)

andg=e,i. Here and subsequently the componentkat®)  The apove approximations will be used as appropriate in
=(0,0) is excluded, as steady state values are treated sePpgger sections, where we present dispersion relations for vari-

rately. ous forms of feedback and emphasize the effects of feedback
Equations(14)—(17) reduce to by comparison with the case where there is no feedback. To
that end we next outline the frequency domain characteristics
(De—peleNeeSel ) pe— pel NeiSiL @i = pel eNe Sl s, of the model without feedbacqu y
(20)
(D;— pil iN;iiSiL) &b — piliNigSeL po= piliNisSsL s D. Properties of basic linear dispersion relation
(21 The dispersion relation corresponding to E80Q) is [11]
by elimination ofP.;, Ve, andQ;. The transfer function w ) w2 )
del ds is then (1—|;)(1—|E 1—|7e +(Kre)?| = Gee=0,
31
be Ged (D~ 11sGyiL) o 3D
s De(Di—GjiL)—Ged (Di—1;eGjiL)’ in which the linear dynamics is determined only by excita-
tory neurons. Solutions to E¢31) have a simple form when
where we have introduced dimensionless variables a= B andk=0, with
Gee=Pel eNeeSe, (23 a+ a—ye\?
ee Pel eNeeSe i 27e)ii \/a’}/e Goot ZYe)
Gii=piliNiisi, (24) 0= N 5 (32
[ XT Ve \/ a— 'Ve)
—i +\/ a¥eVGee— | ——| .
Ges= pel eNesSs s (25 ( 2 ) TeVTe 2
lio=1—NgiNie/NgeNi; , (26)  Note that(i) the first pair of solutions predicts one purely
imaginary root that can be unstable, yielding the stability
lis=1—NgiNig/NoN;; (27)  criterion (a+ ye/2)> Vayo\Geet [ (a— yo)/2]? (or, more
simply, G¢<1), (ii) the other member of the first pair has a
to characterize components of gain and the asymmetry bemlue ranging fromw=—ia for G,.=0 to w=—i(a

tween connectivities of excitatory and inhibitory neurons.  + y,)/2 for G¢.=1, and(iii) the second pair yields a condi-

The dispersion relation is obtained by setting the denomition a)’e\/G_ee>[(a— ve)/2]? for there to be oscillatory
nator of the transfer function to zero, giving roots. Equation(31) is easily solvable forkre>Gege, in
which caseG,. can be neglected and the solutions are
damped nondispersive traveling waves wih- = kv —i vy,
and two purely damped roots at=—i«a and —ig.

DiDe—GiiLDe— Gl Dj+1;0GeGiiL2=0. (29

Equation(28) is a rational function ofw and although nu-

. X o . foots they have a damping ratey.. These general charac-
can cqntager thﬁt 'ﬁcht?]re tr;re fracUont;al\I dten5|f|5(s]£3:e,| ’SI) ¢ teristics also apply to the full eighth-order dispersion relation
associated each ot the three possib'e types o axona ermﬂZB), as is illustrated in Fig. 2, and will be contrasted in Sec.

nals in the cortex, which depend both on the density of NeUN/ with those that occur when the model is augmented with
rons of each type and on the average number of synapses gébdback
! .

the axons of each. We then assume that connections ma
with dendrites are random, in the sense tigs= Ny, with
p=e,i,s andq=e,i, whereNy| are the mean total numbers
of dendritic synapses on excitatory and inhibitory neurons. There are numerous metabolic and biophysical processes
This definition ofNy, with Egs.(26) and(27) implies thatl; ~ whose effect is to modulate neuronal responsiveness, depen-
andl;s are identically zero. dent on current or recent levels of activity. Each is consid-
Another useful approximation relates to the tein. ered here as a form of feedback, whereby some measure of
Sincer;<re in humans,y;>v, so Dj(k,w)~1 whenever neuronal activity modulates parameters of the model that had
w,kv<v; [11]. This is termed thdocal inhibition approxi- previously been considered constant. We aim to represent
mation feedback in a sufficiently general way that our results can be

IIl. FEEDBACK
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100 ' ' ' ' and so does not appear in dispersion relations. Alsand 6;
0 do not need to be considered explicitly due to the symmetry
. e be;[weende>|<citatory fand ir:jhibitory guangties. Conseqt&ently,
"o . only modulations ofs, and 6, need to be investigated in
3 100%“% d., what follows.
E 200t % N 9 ] As to which variables drive modulations, there are again
+ mathematical and physiological reasons for limiting the pos-
-300¢ 8e 3 sibilities. First, Egs.(14)—(17) are similar with respect to
: : : : excitatory and inhibitory neurons. This means that we need
-300 -200 -100 O 100 200 300

Re(w) (s) to derive dispersion relations for driving variables belonging
to only one class of neuron, as the others can be obtained by
FIG. 2. Solutions of the dispersion relati@28) with the param-  symmetry. This means that feedback mediate®pby; ,V; ,

eters as in Table | angs=90 s ! for O<kr,<5. For each mode, and ¢; need not be explicitly considered here. Secdnglis
kre=0 is marked with a square. Two sets of roots are shown. Onein intermediate construct that is not directly identifiable with
set(solid lineg consists of solutions to the eighth-order dispersion any physiological quantity, so it is not an appropriate driving
relation (28), of which six roots are shown. An additional pair of yariable. Third, Eq(16) shows that small-amplitude pertur-
roots with @~ kv —iv; is not shown sincey,~10° s™*. Super-  pations ofQ, andV, are proportional to each other. For this
imposed on these roots are the solutitsoown with crosseof the reason we do not consid€), in what follows. That leaves
fourth-order dispersion relation derived from E80). In this figure #. andV, as the driving variables to be considered below.
and subsequently we use the labelsand g to suggest the eThe fir?al matter is to decide the form Hi(t) in Eq. (33)
asymptotic damping ratesia or —iy,;. The subscript® andi For n=1,2 we useH (t)= 7"t" lexp(- 7t) Whentz(.) ana
indicate whether the root concerned is most sensitive to excitatoréero othérvvise The rate constapicharacterizing feedback

or inhibitory parameters. Roots occur in pairs, so each member i . his f imoli imol
arbitrarily assigned a superscriptor —. The range of the abscissa IS assumed positive. This form d(t) implies a simple

is =300 s* or =48 Hz, to match that of EEGs. differential equivalent of Eq(33):
n

applied to a wide variety of specific mechanisms. The sim- (l E+1 [X(r,t) =x©O7]=xD[ x(r,t) - ¥'9]. (39
plest such formulation is 7 dt

X(r,t)=xO+xVH) [ x(r,t)— x ], (33 Substitutings, and 6, for x, and ¢, andV, for x in Eq.

(33 gives

wherex represents a parameter of the mogels one of the
model variablesx(?) and x(%) are steady state valueg!) is se(r,t)=s +s{PH(D @[ ¢e(r,) — ¢V], (358
a constant describing the strength of feedback, (g is a
function that describes the temporal form of the feedback, se(r,t)=s(e°)+s(el)H(t)®[Ve(r,t)—Vg°)], (35b)
with [Z_H(t)dt=1 andH(t)=0 for t<0 to enforce cau-
sality. Some assumptions are implied by E§3): (i) the Ge(r,t)=0590)+agl)H(t)@)[(be(r,t)—(ﬁgO)], (350

perturbations are small enough that a linear equation is ad-

equate,(ii) modulation is local in space, ar(di) x*) and 04 A1) ©

H(t) do not vary with position or time. These assumptions Oe(r,t)= 0"+ 0 H(1)®[Ve(r,t) =Ve"] (350

may need to be revised in the future, but in the absence of

Compe”ing reasons to do otherwise we consider On|y modu@SsS the four cases to be ConSidered, which we refer to as types
lations of the form(33). A-D, respectively. The reference valugs” andVv{® are
always chosen to be steady state values of the corresponding
variables, which is not strictly necessary but has the practical

o attraction thas{®) and ) have the nominal values in Table
Whenx represents one of the parameters listed in Table |

and y one of Py, Qgi, Vei, OF ¢g;, One can substitute

Eq«(33) into Egs.(14)—(17) to derive a linear dispersion re-

lation. A potential difficulty is that there are many combina- IV. DISPERSION RELATIONS WITH FEEDBACK

tions of parameter and variable. However, it is not necessary pHere we examine the general characteristics of the four
to consider every one: For both mathematical and physigjasses of feedback through the corresponding dispersion re-
ological reasons the number of cases needing to be examinggions and contrast them with the feedback-free results of

is actually far less, as we show next. Sec. Il. The transfer functions resulting from E¢853—
Concerning which parameters may be affected by feedi3gg) gre

back, the majority are either inherently constéich adN.,

andNg;) or effectively constant in the normal braisuch as be Ged (D;—1,.GyiL)

a,QT™ and v). The only parameters that are certainly . DD -G.L)-G.L(D —1..G.LF.
s el i ee i ieii A

Classes of feedback

ei (368)
modulated ares,; s (due to biophysical and biochemical ef-
fects[17]) andé,; (e.g., due to long-acting neurotransmitters
and reduced excitability immediately following firifg.8]). Pe _ Ged (Di—1isGiil) (36b)
Of these,s; is associated with the subcortical driving signal ¢s Do(Di—G;iL)Fg—Gecl (D —1;cG;iL)’
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¢e_ Ged (Di—1isGiiL) _ GeJH_l"'hD)
$s (De—Fo)(D;—GyL)—Ged (D~ 1.GyL) " el s T (71D, = Gog)—hpGadl
(360

(40d)

where H 1=(1-iw/7)" L 1=(1-iw/a)? and D.=(1
R Ged (Di—1;sGjiL) —iwlye)?+k?r2. A further simplification has been made
@: Deo(D;—GiiL)/Fp—Ged (D;j—1;G;iL)’ (36d  here and henceforth by setting= 8, which is consistent
with physiology[16]. In order to understand the cabg,
respectively, wher®, ;(k,») andL(w) are given by Egs. #0, we consider separately two extremes#h> «a,y, and
(18) and (19). [The Appendix contains a derivation of Eq. 0 n<a,ve.
(36a and the other transfer functions can be derived simi-
larly.] The present transfer functions differ from the A. Fast feedback: 7> a, v,
feedback-free cas@?2) only in the factorsFp—Fp,

In examining fast feedback, it is convenient to examine

Fa(w)=1+hsH(w), (379  typesAandD first and then type8 andC.
Fg(w)=1—hgH(w)L(w), (37b 1. Types A and D feedback
The transfer function$40g and(40d) both imply normal
Fc(w)=hcH(w), (370  modes given by the roots of
Fpo(w)=1+hpH(w), (370 H™ (L™ 'De—Geo) —haGee=0, (41
where so the two cases can be dealt with as one. If we substitute
Egs.(18), (19), and(39) into Eq. (41) we find
ha=(sM/s?) ¢, (383 _ o 2 2.2
(I-io/p™(1l-iw/a)T(1-iwlye) +kTi]—Geo
— (1) 4(0)
hB IeNeeSe ¢e ’ (38b) _hAGee: 0. (42)
hc= _Peb’(el)1 (380  This is easily solved in the trivial cagg..=0, resulting in
i roots at—i#n,—ia, and =kv—ivy,. However, in practice,
hp=— 6 (38d  G,.may be~1, which is of the same order as all other terms

) . i in Eq. (42), so the effect o5, andh, must be considered in
are the dimensionless feedback strengths. The quardifies ore detail.

and 6%, introduced in Egs(35), can be evaluated when  One can show that the roots near=—iz are only
specific p_hysiological feedback mgchar)isms are chosenveakly affected byG., andh, by substitutingw= —i 7+ €
However, in the present context, which aims to be indepeninto Eq.(42) and retaining only the lowest order efy. We
dent of such choices, it is more convenient to present resuligng 6/7/~i(hAGeea27§/ 79" and for 7> a, v, these are

in terms ofh,—hp . These values will be referred to generi- rapidly damped modes of little relevance to EEGs. The re-
cally ashy in situations where no confusion should result majining roots all have|w|<# so the termH 1=(1
and will be considered to be free parameters of either sign._ ,,/ ;)"~1 and a much simplified dispersion relation re-
The definitions ofh,—hp have been chosen so thay>0  syits. Then, in the limik—c, the solutions are simply

corresponds to positive feedback amg<0 corresponds to =+, —jy,,—ia (as in the feedback-free casand when
negative feedback. The remaining feedback quantity i%=( the solutions are

H(w): According to the choice foH(t) made in Sec. lll,

aty

H(w)=(1—iw/n) " (39 w=—Ii

_ 2
Sk \/ia')’eV(l"'hA)Gee_(%) )

(43

For hy,=0, Egs.(369—(36d each reduces to Eq22),
but for hy,# 0, Egs.(363—(360) are less convenient for ana-
lytical investigation. However, the simplificatid; =0 has  sqytions that are similar to those described in Sec. I D in
been found to result in adequate approximations to the exa‘foteing of the form —i(a+ ye)/2= (purely real values) or

. ; ; . o) 2+
solutpns for parameters in physiologically reasonable rangegi(aJr v.)/2+ (purely imaginary values), the alternative
and gives h,<—1 gives qualitatively different solutions of the form
— — — —_ 1 + _ H
bl b=GoH HY[H YL Do Geo) — haGedl, +I(a+ ve) /2% \Jcomplex yalues _and i(atye)/2
(409 +/(complex values). This has an important consequence
for the modeling of electrocortical activity: Purely damped

where all four combinations of signs are implied. Only the
latter limit depends orh,. While ha=—1 results in four

bol ps=GeH Y[H YL Do~ Gge) —hgDel, modes of the basic model are transformed into modes that
(40b) are guaranteed to be oscillatory and that may be lightly
damped.
bel ps=GeH Y[H YL D= Gge) —hcL 1], Figure 3 shows solutions of the typedispersion relation

(400  for several values difi, and a range df. Solutions of theull
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100 ' ' ' ' with ¢, altering the total gain fronGe. to (1+h,)Gee and
o () all modal changes flow from this effective alteration of the
- Il gain.
" .
é 7100 m % o 2. Types B and C feedback
E 200f af- & ";‘,, E The approximate dispersion relations for fast feedback of
300k al ! i types B and C are obtained from the denominators of Egs.
(36b) and (360 if we setl;,=0, G;;=0, D;=1, andH?
300 200 100 0100 200 300 =1 as before. This gives, respectively,
Re(a) (s”) ; 2 ; 2.0 1,22
[(1-iw/a) " —hg][(1—-iw/ye) +kTs]—Gee=0,
100 rreereee e (44)
0 ®) (1—iw/a)(1—iwlye)?+kri—hc]—Gee=0. (45)
'ﬁ -100E — 8 | ————— Although Egs.(44) and (45) are similar to Eq.(42) in
% %e . dilat % being independent of; and n, they have different depen-
= -200¢ g’ 4 vat 3 dences orhy,. For hy,=0, solutions are as for the basic
300k F model without feedback, but al),| increases,. becomes
. . . . negligible and the equations simplify accordingly. The solu-
-300 -200 -100 0 100 200 300 tions of Eq.(44) are thenw=—ia(1*hg) and w=*kv
Re(w) (s") —ive. Similarly, the solutions of Eq(45) approachw
=—ia andw=—iye* ye\kr2—hc. They are markea.
100 ' andg, , respectively, in Fig. 4. The exact dispersion rela-
0 © tions also have a pair of roots” nearo=—ia, a pairg;”
— / \ that is symmetrically placed aroundiy;, and one or two
< -100 de g5 roots (depending om) near—i 5. All but the first pair are
é ] a|at s too heavily damped to appear in Fig. 4 and are not of rel-
= -200¢ ae( b }ae 3 evance to EEG for the same reason.
200k ] Figure 4a) and 4b) shows roots of the dispersion rela-
L o tions for feedback of type® and C. In these examples,
-300 -200 -100 O 100 200 300 |hy|> Gee so thathy, has a particularly strong influence on
Re(w) (s7) the roots labeled,; in Fig. 4a) and on the roots labelegf;

in Fig. 4(b). In both cases, varying,, moves the affected
joots laterally while not greatly affecting their imaginary
parts. The rate constantsand y, are the other determinants
=90 s!, for O=kr,<5; k=0 is indicated by a square unless ©f the root locations. Figure(g) illustrates this point by
there is little dependence da One root with Img)~—» and a  ShOWIng the roots for the same system as in Fig) $ut
pair of roots with Img)~ — y; are not shown as they are too rap- With @ reduced from 200" to 50 s in excitatory neu-
idly damped to be of relevancé) hy=—0.8,(b) hy=—1, and(c) rons, thereby scaling the rocs by the same factor: Roots
ha=-3. at real frequencies of+350s1(+55 Hz) move to

. . . +90 s (=14 Hz). The roots labeled, can likewise be
dispersion relation are shown, rather than those of the a.aled thoughy,
-~

proximation(42), to demonstrate that conclusions based on
the approximate form also apply to the exact dispersion re-
lation. Figure 8a), in which feedback is weak, has the same
general appearance as Fig. 2, while Fig) and 3c) show Here we are mainly concerned with roots lying near the
solutions for stronger feedback. As suggested by (&8), origin, as the remaining roots prove to be scarcely affected
the latter are characterized by the absence of purely dampdyy slow feedback. The reason for this is tHafj~« and
roots. Of particular interest is the progressively increasingy.> » for all roots far from the origin, so the magnitude of
damping of the nearly unstable root labelagd ash, be- H ™ '=(1—-iw/5)"~(—iw/7)" is large compared to the fi-
comes more negative and the simultaneous destabilization ofal terms in the denominators of Eq40a—(40d. Thus the

the roots labeled, . The latter roots, identified as propagat- final terms can be dropped and the dispersion relations for
ing wave modes by their asymptotically constant group vethe four types of feedback become identical, with
locities, eventually become unstable when they enter the ug——iw/7)"(L " 'D¢—Gee) =0, which leads to the same
per half of the complex plane. modes as in the feedback-free c#&3#).

The feedback parametersandn have only a weak effect Of the roots near the origin, one is expected from the
on solutions. The reason for this is most evident from Eqfeedback-free caséhe root labeleda, in Fig. 2) and n
(42): For w< 5 the term (1-i w/ )"~ 1 whatever the values others occur as a result of feedback=1,2). The location
of » and n. In physical terms, the high rate of feedback of each is simply inferred only in the limiy,— 0. In this
means thas, is modulated proportionately to, and in phasecase the last term in the denominator of Egt08—(400d)

FIG. 3. Effect of fast f=5000 s'), first order typeA feed-
back. The roots are solutions to the full dispersion relation obtaine
from Eq. (36@. The parameter values are as in Table | ahd

B. Slow feedback: p<ea, v,
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FIG. 5. Effect of slow (=1 s1), first-order feedback of type

C. The roots below are solutions to the full dispersion relationsA or D. The values of other parameters are as in Table | @and

obtained from Eqs(36b) and(36¢). The parameter values are as in
Table I, ;=90 s, hg=hc=—3, and O<kr.<5. Squares indi-
catek=0 unless the mode has little dependencekofe) Type B
feedback, in which two roots labelegf first converge ax in-
creases and then diverde) Type C feedback(c) Type B feedback
as in(a), but with = B8=50 s ! in excitatory neurons.

vanishes, givindd (L "!D,— G, =0 as the dispersion re-
lation. Then the factorH =0 implies a root with @
—in. (If n=2 it will be a double roo}.

Turning now tohy, # 0, feedbacks of type& andD will
be considered first and then the results for tygeand C
feedback will be summarized.

1. Types A and D feedback

By assuming H '=1—iw/7 and setting L *=(1
—iwla)?, asin Sec. IV A, the dispersion relation implied by
Eq. (409 becomes

(1—iw/P[(1—io/a)’De— Geal —hyGee=0, (46)

where D= (1—iw/ys)?+k?r2 and hy,=h, or hp in the

present context. Sindev|<a,y., Egs.(46) becomes

=90 s . The roots below are solutions of the dispersion relation
implied by Eqg.(36@. Solutions are shown for the range<@r,

<b5. In those cases where there are lightly damped oscillatory
modes, these merge and become purely damped modksras
creases and approachin and —ia in the limit k—oo. (a) hy
=10, (b) hy 10, and(c) hyy=—100.

0=1+k?r2—(1+hy)Gee—i| 1+ Kk?r2—Gget+ (1+k?r2)

2y 27 n 27|’
Sl YO RV kA i (47)
a e ( e) Ye 777

after discarding terms that are second order or higher in
wla, olvy., mla, andnyly,. Figure 5 demonstrates that as
kre increases, a pair of oscillatory roots approach each other
along opposite arcs, merge, and then separate as purely
damped roots, the one labeledending asymptotically to
—in and the other labeled, tending to—i«. The latter is
similar to the root of the same name in previous figures,
while the locus of roots labelegland the unlabeled arcs arise
only because of feedback.

The casen=2 is more difficult to deal with analytically;
however, numerical results show similar behavior to the
=1 case, namely, oscillatory roots whégy, is sufficiently
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negative and purely damped roots otherwise. The two rootdependence on wave numklsee Fig. 4c)].
arising from the feedback whem= 2 tend to cluster closer to (iii ) With slow feedback of any typ&—D there are ad-
the origin than whem= 1, but otherwise the results are simi- ditional modes, all of which are lightly damped. Again,

lar. negative feedback is a condition that they be oscillatory and
the frequency increases with the strength of negative feed-

2. Types B and C feedback back(see Fig. 5.
Starting with the transfer functiongob) and (400), we These three kinds of lightly damped modes are distin-

obtain the dispersion relations ~1(L ‘D~ G,o) — hgD, guished by their d_ispersion characteristics:kﬂis_creases;u

=0 andH YLD~ G, —hcL~1=0 for typesB and C increases in the first kind of resonance, remains almost con-

feedback, respectively. These are similar to the case of typed@nt in the second, and decreases in the third.

A and D feedback,H (L™ 'Dy— God —hsGee=0, both All the above results are based in the presumption made
in Egs.(35) that feedback affects eitheg or 8. ; however,

the same methods can be applied to infer the effects of

énodulation of inhibitory parameters. Results are presented in

when w~ 7 (becauseD ~L '~1~G,.o and wheno> 7
(becausehpGee, hgDe, andhcL ™1 are negligible. As a
result, roots of the dispersion relations are similar to thos . . "
found for typesA and D feedback and Fig. 5 gives an ad- terms of dimensionless feedback strengthgs; however,

equate illustration of most aspects of the dispersion for typegqs: (38) proviQe th? means to derive numerical results for
B and C feedback. particular physiological processes.
Having identified and characterized several forms of feed-

back that are potentially significant in the large scale activity
V. SUMMARY of the cortex, it is now possible to combine the expressions

Feedback is likely to be a requirement of models thatPresented here with the rate constants and strengths of spe-

attempt to model EEGs. In this paper we investigate the rol&ific physiological mechanisms and thereby obtain physi-
of local feedback by generalizing our previous continuume!ogically based trar_lsfer functions and dlspgrS|on relations.
model of cortical electrical activity11]. Then numerical estimates for the frequencies of the most

In Sec. Il we derive transfer functions that are expressedightly damped modes will follow and identifications may be
in terms of basic physiological quantities, such as ﬁringpossmle with characteristic EEG rhythms, such as those near
threshold, synaptic response sizes, firing rates, and memtO Hz (known asa), 15-30 Hz 8), and 40 Hz ). It may
brane potentials. This allows local feedback to be classifie@/SC be possible to obtain experimental evidence for
into just four fundamental classes identified in Sec. IIl. Thesdréduency—wave-number relations resembling those in the
four classes describe linear modulation of synaptic strengthRrésent paper. In any case, the present work helps to make a
and firing thresholds by incoming firing rate or transmem-connection be.tween macroscopic quantities and cellular level
brane potential. It is argued that other possibilities either aréluantities, which can guide the development of more accu-
not indicated physiologically or are redundant mathematifaté models of EEGs, and eventually lead to more thorough
cally in the context of our model. The four feedback classend clinically relevant analysis of EEGs.
are thus fundamental.

Section IV examines the properties of the four transfer
functions to investigate the effects of these feedbacks on the
system’s characteristics. Several results emerge: Classes This work was supported by the Ross Trust, Melbourne.
andD of feedback have identical dispersion relations, feed-
back with a rate constant introduces roots in the vicinity of
—in, and ask—o other modes tend to values= *+kv APPENDIX: MODULATION OF s, BY ¢,

~ive,~ia, which are independent of feedback and deter- ¢ (ransfer equation for typé feedback is obtained
mined instead by the dendritic damping rate ang, the ¢ Egs.(1), (15—(17), and(353, as shown below. Trans-

damping rate of long-range propagation. . fer equations for caseB—D can be derived similarly.
In view of the possible significance of feedback-induced For linear modulation of, by ¢(r,t) we begin by as-
modes to the generation or modulation of EEGs, we als uming, in accordance witheE(fsSa)e tr’1at

looked for modes that were lightly damped. They were foun
to occur in three situations.

(i) Fast feedback of typea and D (incoming firing rate Se(r,1)~s O+ sVH(t) @[ de(r ) — V], (A1)
modulating synaptic efficacy and outgoing firing rate modu-
lating thresholdscaused existing oscillatory roots to become
lightly damped(see Fig. 3 A condition for such lightly
damped modes to exist is that the strength of feedback is
suffipientlly negative This could occur if an increasg in in- Pe(r, 1) ~Nges¥ de(r,t) + NeestH p VH (1)
coming firing rate causes a decrease in the synaptic efficacy
or if an increase in outgoing firing rate causes an increase in ®[ pel(r,t)— ¢g°)]+Neisi¢i(r,t)+ NeSsds(T,1)
firing threshold. (A2)

(i) When there is fast negative feedback of typand the
dendritic rate constant is less than the damping rate of propa-
gating waves, a lightly damped mode arises whose frequenay first order in deviations of the variables from their steady
increases with the strength of negative feedback and has littistate values. The Fourier transform of E42) is
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so that Eq.(1a becomes
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Pe(K,®)=Ned s+ s ¢ OH(w) ] de(k, ) of Se (E)y gse is to multiply s. by factor 1
+ (875 pOH(w) in (14), we immediately see from Eq.
+Neisi#i(K, @) + NesSsds(K,0),  (A3)  (22) that the transfer function is

and similarly forP;(k, ),

Pe _ Gesl (Di—1isGiiL) (A5)
Pi(k, ) =Nig[s” + (" pe7H (@) ] el k, ) + Nijsi i (K, ) ¢s De(Di—GiiL) = Ged (D= 1;cGiiL)Fa’
+NisSsés(k, ). (A4) where we define the feedback factex by
Equations(A3), (A4), and (15—(17) can then be used to (1)1 (O «(0)
derive a transfer function. As the only effect of modulation Fa(w)=1+(sg"/se”) e 'H(w). (AB)
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