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Effects of local feedback on dispersion of electrical waves in the cerebral cortex
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This paper generalizes an existing continuum model of the large-scale electrical activity of the brain by
incorporating local feedback. The model is first reformulated by parametrizing neuronal function in more detail
and we then show that only four broad classes of local feedback are consistent with general physiological
constraints. The corresponding linear dispersion relations are found to contain additional modes as a result of
feedback. It is shown that each feedback class can produce lightly damped or undamped oscillatory modes at
frequencies similar to those seen in electroencephalography, although not all combinations of type and speed
of feedback result in oscillatory behavior. Three kinds of lightly damped resonances are found, each with
distinctive frequency characteristics. The effect of feedback on other roots is also described.
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I. INTRODUCTION

Continuum approximations offer a means of modeling
large-scale electrical activity of the brain and current mod
incorporate the principal features of the brain’s structure
physiology, including distinct neural populations, nonlinea
ties, and the conduction velocities of impulses@1–10#. How-
ever, feedback has not previously been considered in s
models, despite being a demonstrable feature of brain ph
ology and a potential reason for the periodic appearanc
electrical signals recorded from the brain. The purpose
this paper is~a! to find a way of categorizing the many po
tential forms of local feedback and~b! to examine the con-
sequences of each kind of feedback. This is done in the c
text of a recent continuum model of brain electrical activ
@11,12#.

Brain activity causes potentials on the scalp and reco
ings of these potentials, called electroencephalogra
~EEGs!, are used as a measure of brain function. EEGs c
tain spatial and temporal features that are sufficiently con
tent that correlations can be made with mental state; h
ever, the correlations are based on coarse parametrizatio
the EEGs so their specificity is poor. If, with the help of
model, EEGs could be quantified more in terms of unde
ing anatomical and physiological quantities, their value a
probe of brain function would be greatly enhanced.

In modeling EEGs there is an abundance of anatom
and neurophysiological information that can be drawn up
although it must be understood that the huge number of n
rons in the human brain (;1011) and their intricate structure
and interconnections preclude modeling the whole cor
down to the scale of individual neurons. An alternative is
use continuum equations that average over times and
tances much less than are characteristic of EEGs. Early
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works were those of Wilson and Cowan@1#, Nunez@2#, and
van Rotterdamet al. @3#, followed by generalizations by
Nunez@4#, Jansen and Rit@5#, Wright and co-workers@6–8#,
and Jirsa and Haken@9,10#. Some sought to account for th
general characteristics of EEG, while others made a conn
tion with cognition and behavior.

A recent continuum model, proposed by Robinsonet al.
@11#, treated the propagation of neuronal activity betwe
neurons using a wave equation. This approach, when c
bined with a model of transmission within neurons includi
nonlinear elements, was found to facilitate both analyti
and numerical modeling of electrical activity in two dime
sions and has been used for estimating two-point correla
functions@12# and in studying global cortical dynamics@13#.

This paper extends the model of Robinsonet al. to incor-
porate more physiological detail. We are particularly co
cerned with the many metabolic and biophysical proces
involved in chemical transmission between neurons and
resulting changes in membrane properties, each of which
the effect of modulating the responsiveness of neurons.
approach adopted here is to consider them as instance
local feedback. The goal is to find tractable representati
of these feedbacks that are sufficiently general to cover
numerous physiological possibilities. A further goal is
characterize the classes of feedback through their linear
persion relations.

One likely result of feedback in cortical models is to i
duce resonances that may be of relevance to the modelin
EEGs. This is in contrast to previous versions of our mo
@11,12# which lacked feedback and showed no spectral pe
typical of EEGs@4# when driven by wideband noise. Whil
the possibility also exists of subcortical generators for E
components@14#, resonances induced by local feedback m
also affect the signals recorded from the cortex and scalp
an application of the classification and characterization
feedbacks, we look at the circumstances in which feedb
leads to resonances.

Section II briefly reviews the model of Robinsonet al.
@11#. Section III describes the general approach by wh
3320 ©1999 The American Physical Society
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feedback is introduced and identifies just four distinct clas
of feedback. The dispersive characteristics of the differ
classes are described in Sec. IV. In Sec. V implications
electrocortical modeling are discussed.

II. BASIC CORTICAL MODEL

This section outlines the model that is the basis of
subsequent sections. First it briefly reviews the model a
appeared in previous work@6–8,11,12#, with some notational
changes that allow us to incorporate feedback. We then
line the steady state solutions and the dispersion relat
that result.

A. Basic equations

Neurons are diverse and intricate in their structure a
function; however, their density is such that at scales
greater than a few tenths of a millimeter it is valid to a
proximate the cortex as a homogeneous continuum. Sev
continuum models have been proposed@1–12#. The cortex is
commonly assumed to be two dimensional, which is justifi
by its thinness~2–5 mm in humans! compared to its circum-
ference (;600 mm).

Another assumption common to continuum models is t
the properties at any point are simply the average of thos
the population of real neurons in the vicinity. However, o
distinction between neurons is maintained: Some releaseex-
citatory chemical transmitters at their terminals while othe
releaseinhibitory transmitters. The effect of the former is t
depolarize the target neuron and make it more likely to fi
while the latter have the opposite effect.

The operation of neurons consists of four stages: com
nation of all incoming activities, transmission of summ
activity to the main body of the neuron, consequent modu
tion of the neuron’s level of activity, and propagation
neighboring neurons. The first of these processes, somet
referred to as spatial summation, is the combination of
pulses arriving from other locations in the cortex and fro
deep within the brain. This takes place in the input orden-
dritic part of the neuron. The dendrites are fibers project
from the main body of the neuron, which serve to increa
the neuron’s receptive area for connections~synapses! from
other neurons. We usefe(r ,t) andf i(r ,t) to represent the
excitatory and inhibitory activity reaching a particular poi
from other points in the cortex, expressed as a rate of
pulses oraction potentials~rather than being normalized a
in our previous work@11#!. For this reason the ranges offe,i
are limited by the maximal rate at which action potenti
can be generatedQe,i

max, so that 0<fe,i<Qe,i
max. Activity

fs(r ,t) also reaches the cortex from subcortical sites. T
net effectsPe,i on excitatory and inhibitory neurons are sum
of cortical and subcortical contributions

Pe~r ,t !5Neesefe~r ,t !1Neisif i~r ,t !1Nesssfs~r ,t !,
~1a!

Pi~r ,t !5Niesefe~r ,t !1Nii sif i~r ,t !1Nisssfs~r ,t !.
~1b!

Each of the coupling strengths in Eqs.~1! has two com-
ponents:Nqp , which is anatomical or structural in characte
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andsp , which is physiological or functional in nature;Nqp is
the mean number of connections from neurons of typep
5e,i ,s on a neuron of typeq5e,i andsp is the size of the
impulse response associated with synapses of typep
5e,i ,s. The latter is the time integral of the perturbation
the transmembrane potential, as measured at the syn
Table I lists representative values of these factors, which
used in later numerical results. Note thatsi is negative in
keeping with its inhibitory character and is greater in ma
nitude thanse to reflect experimental evidence better@15#.
However, the parameters can be considered arbitrary in
present context, as we are principally concerned with gen
results.

Each pulse arriving at a synapse causes a brief local
increase in membrane conductivity, leading to a perturba
of several millivolts in the potential across the membra
Each perturbation spreads through the dendritic tree
reaches the body of the neuron with some attenuation
lag. Both depend on the distance of the synapse from the
body; a factorl e,i can be used to represent the average
tenuation and convolution ofPe,i with a unit-area function
L(t) can be used to represent lag. This results in the follo
ing expression for the net depolarization at the body of
two classes of neurons:

Ve,i~r ,t !5 l e,iE
2`

`

L~ t2t8!Pe,i~r ,t8!dt8 ~2!

5 l e,iL~ t ! ^ Pe,i~r ,t !, ~3!

where the symbol̂ indicates convolutions of the kind in
Eq. ~2! andL(t) is a non-negative function that is zero fo
t,0 and has unit area. Experiments have suggested the
lowing approximation forL(t):

TABLE I. Parameters for the human cortex, based on@11# and
the additional assumptions(Nep5(Nip55000, usi u54se ,Qe,i

max

5200 s21, l e,i50.1, andue,i50.015 V.

Parameter Value

Nee 4826
Nei 130
Nes 44
Nie 4789
Nii 166
Nis 46
se 2.031026 V s
si 28.031026 V s
ss 2.031026 V s
l e,i 0.1
a,b 200 s21

Qe,i
max 200 s21

se,i 0.005 V
ue,i 0.015 V
v 9 m s21

r e 0.084 m
r i 0.0001 m
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L~t!5H ab

b2a
~e2at2e2bt!, aÞb

a2te2at, a5b,

~4!

~5!

for t>0, andL(t)50 otherwise@16#. The time constants
1/a and 1/b are of order 5 ms, which is greater than t
duration of an action potential, so the process~2! is some-
times described as temporal summation, in contrast to
spatial summation in Eqs.~1!.

In the absence of synaptic input, the transmembrane
tential of a neuron tends to a resting value of abou
270 mV with respect to the exterior of the cell. For sim
plicity, this offset is omitted from Eq.~3! and from all sub-
sequent expressions involving potentials.

The transmembrane potentialVe,i at the body of the neu
ron determines the neuron’s output firing rate. An outgo
pulse is triggered wheneverVe,i reaches a threshold, so th
response probability has the form of a step function. Ho
ever, as we are considering population behavior and usi
continuous variable to describe neuronal output, we take
response function to have a smooth transition from 0 t
maximumQe,i

max, with a width that reflects the variation o
threshold levels encountered in real populations of neuro
We could assume the distribution of thresholds to be nor
with a mean ofue,i and a standard deviation ofse,i , so the
response function would be an error function; however, i
more convenient and consistent with previous work@1,5–12#
to adopt the following relation betweenVe,i and the output
firing rateQe,i :

Qe,i~r ,t !5
Qe,i

max

11exp@2C~Ve,i2ue,i !/se,i #
, ~6!

which closely approximates an error function. The derivat
of Eq. ~6! with respect toVe,i , required below, is

dQe,i

dVe,i
[re,i5~C/se,i !Qe,i~12Qe,i /Qe,i

max!, ~7!

which has a maximumre,i
max5CQe,i

max/4se,i at Ve,i5ue,i . We
chooseC5p/A3'1.81 so thatdQe,i /dVe,i approximates a
Gaussian and has standard deviationse,i .

The last stage in the operation of neurons is the transm
sion of impulses along output fibers~axons! to other syn-
apses. In the continuum approximation this is usually
sumed to be isotropic. It has been shown@11# that this
propagation of activity through the cortex can be describ
by the damped wave equations

De,ife,i~r ,t !5Qe,i~r ,t !, ~8!

De,i5F 1

ge,i
2

]2

]t21
2

ge,i

]

]t
112r e

2¹2G , ~9!

wherev is the axonal conduction velocity,r e,i are the char-
acteristic ranges of axons, andge,i5v/r e,i .

Together, Eqs.~1!, ~3!, ~6!, and~8! represent a complet
set of equations for the dynamics of the variab
Pe,i ,Ve,i ,Qe,i , andfe,i , of which only Eq.~6! is nonlinear.
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From these, steady state solutions can also be obtaine
can linear dispersion and stability properties@11#.

B. Steady state solutions

When all derivatives are set to zero andfs(r ,t)5fs
5const in Eqs.~1!, ~3!, ~6!, and ~8!, we find Ve,i5 l e,i Pe,i
andfe,i5Qe,i , giving

Ve5 l e~NeeseQe1NeisiQi1Nesssfs!, ~10!

Vi5 l i~NieseQe1Nii siQi1Nisssfs!, ~11!

Qe,i5
Qe,i

max

11exp@2C~Ve,i2ue,i !/se,i #
. ~12!

Figure 1 showsQe,i as a function offs for a typical case.
For givenfs there are two solutions for eitherQe or Qi with
low firing rates and one high firing rate solution withQe,i

'Qe,i
max ~not shown! @11#, but as the control parameterfs is

increased a point is reached where the two low firing r
solutions merge and vanish@11#. The high firing rate solu-
tions are not of concern here as we are only interested he
the linear dynamics of the system at the low firing rates m
typically observed in the brain. It was established previou
@11# that only the lower of the two low firing rate solutions
stable, so that is the one we will be concerned with belo

C. Basic linear dispersion relation

The linear dispersion relation is a useful starting point
the investigation of the dynamics of our model and its de
vation is straightforward. First Eq.~6! is linearized about a
fixed pointQe,i

(0) , giving

Qe,i~r ,t !5Qe,i
~0!1re,i„Ve,i~r ,t !2Ve,i

~0!
…, ~13!

wherere,i is defined by Eq.~7!. Fourier transformation of
Eqs.~1!, ~3!, ~8!, and~13! then gives

Pq~k,v!5Nqesefe1Nqisif i1Nqsssfs , ~14!

Vq~k,v!5 l qL~v!Pq~k,v!, ~15!

Qq~k,v!5rqVq~k,v!, ~16!

FIG. 1. Steady state solutions forQe ~solid line! andQi ~dotted
line! for the parameters in Table I andfs(r ,t)5fs5const. The
corresponding results for the other variables are qualitatively s
lar.
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Dqfq~k,v!5Qq~k,v!, ~17!

with

Dq5~12 iv/gq!21k2v2/gq
2 , ~18!

L~v!5@~12 iv/a!~12 iv/b!#21, ~19!

andq5e,i . Here and subsequently the component at (k,v)
5(0,0) is excluded, as steady state values are treated s
rately.

Equations~14!–~17! reduce to

~De2rel eNeeseL !fe2rel eNeisiLf i5rel eNesssLfs ,

~20!

~Di2r i l iNii siL !f i2r i l iNieseLfe5r i l iNisssLfs
~21!

by elimination ofPe,i , Ve,i , andQe,i . The transfer function
fe /fs is then

fe

fs
5

GesL~Di2I isGii L !

De~Di2Gii L !2GeeL~Di2I ieGii L !
, ~22!

where we have introduced dimensionless variables

Gee5rel eNeese , ~23!

Gii 5r i l iNii si , ~24!

Ges5rel eNesss , ~25!

I ie512NeiNie /NeeNii , ~26!

I is512NeiNis /NesNii ~27!

to characterize components of gain and the asymmetry
tween connectivities of excitatory and inhibitory neurons.

The dispersion relation is obtained by setting the deno
nator of the transfer function to zero, giving

DiDe2Gii LDe2GeeLDi1I ieGeeGii L
250. ~28!

Equation~28! is a rational function ofv and although nu-
merical solution is straightforward, some approximations
possible that aid in the analytical interpretation of dispers
relations. One relates to a constraint on connectivities:
can consider that there are fractional densitiesf p(p5e,i ,s)
associated each of the three possible types of axonal te
nals in the cortex, which depend both on the density of n
rons of each type and on the average number of synapse
the axons of each. We then assume that connections m
with dendrites are random, in the sense thatNqp5Nq

totf p with
p5e,i ,s andq5e,i , whereNe,i

tot are the mean total number
of dendritic synapses on excitatory and inhibitory neuro
This definition ofNqp with Eqs.~26! and~27! implies thatI ie
and I is are identically zero.

Another useful approximation relates to the termDi .
Since r i!r e in humans,g i@ge so Di(k,v)'1 whenever
v,kv!g i @11#. This is termed thelocal inhibition approxi-
mation.
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When both random connectivity and the local inhibitio
approximation are assumed, the transfer function reduce

fe /fs5Ges/@De~L212Gii !2Gee#. ~29!

This can be further simplified whenGii '0 to give

fe /fs5Ges/@L21~v!De~k,v!2Gee#. ~30!

The above approximations will be used as appropriate
later sections, where we present dispersion relations for v
ous forms of feedback and emphasize the effects of feedb
by comparison with the case where there is no feedback
that end we next outline the frequency domain characteris
of the model without feedback.

D. Properties of basic linear dispersion relation

The dispersion relation corresponding to Eq.~30! is @11#

S 12 i
v

a D S 12 i
v

b D F S 12 i
v

ge
D 2

1~kre!
2G2Gee50,

~31!

in which the linear dynamics is determined only by exci
tory neurons. Solutions to Eq.~31! have a simple form when
a5b andk50, with

v55 2 i S a1ge

2 D6 iAageAGee1S a2ge

2 D 2

2 i S a1ge

2 D6AageAGee2S a2ge

2 D 2

.

~32!

Note that~i! the first pair of solutions predicts one pure
imaginary root that can be unstable, yielding the stabi

criterion (a1ge /2).AageAGee1@(a2ge)/2#2 ~or, more
simply, Gee,1), ~ii ! the other member of the first pair has
value ranging fromv52 ia for Gee50 to v52 i (a
1ge)/2 for Gee51, and~iii ! the second pair yields a cond
tion ageAGee.@(a2ge)/2#2 for there to be oscillatory
roots. Equation~31! is easily solvable forkre@Gee, in
which caseGee can be neglected and the solutions a
damped nondispersive traveling waves withv56kv2 ige
and two purely damped roots atv52 ia and2 ib.

In conclusion, the fourth-order approximation~31! to the
full dispersion relation has either two or four purely damp
roots, one of which may be unstable; if there are oscillat
roots they have a damping rate;ge . These general charac
teristics also apply to the full eighth-order dispersion relat
~28!, as is illustrated in Fig. 2, and will be contrasted in Se
IV with those that occur when the model is augmented w
feedback.

III. FEEDBACK

There are numerous metabolic and biophysical proce
whose effect is to modulate neuronal responsiveness, de
dent on current or recent levels of activity. Each is cons
ered here as a form of feedback, whereby some measu
neuronal activity modulates parameters of the model that
previously been considered constant. We aim to repre
feedback in a sufficiently general way that our results can
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applied to a wide variety of specific mechanisms. The s
plest such formulation is

x~r ,t !5x~0!1x~1!H~ t ! ^ @x~r ,t !2x~0!#, ~33!

wherex represents a parameter of the model,x is one of the
model variables,x(0) andx (0) are steady state values,x(1) is
a constant describing the strength of feedback, andH(t) is a
function that describes the temporal form of the feedba
with *2`

` H(t)dt51 andH(t)50 for t,0 to enforce cau-
sality. Some assumptions are implied by Eq.~33!: ~i! the
perturbations are small enough that a linear equation is
equate,~ii ! modulation is local in space, and~iii ! x(1) and
H(t) do not vary with position or time. These assumptio
may need to be revised in the future, but in the absenc
compelling reasons to do otherwise we consider only mo
lations of the form~33!.

Classes of feedback

Whenx represents one of the parameters listed in Tab
and x one of Pe,i , Qe,i , Ve,i , or fe,i , one can substitute
Eq.~33! into Eqs.~14!–~17! to derive a linear dispersion re
lation. A potential difficulty is that there are many combin
tions of parameter and variable. However, it is not necess
to consider every one: For both mathematical and ph
ological reasons the number of cases needing to be exam
is actually far less, as we show next.

Concerning which parameters may be affected by fe
back, the majority are either inherently constant~such asNee
andNei) or effectively constant in the normal brain~such as
a,Qe,i

max, and v). The only parameters that are certain
modulated arese,i ,s ~due to biophysical and biochemical e
fects@17#! andue,i ~e.g., due to long-acting neurotransmitte
and reduced excitability immediately following firing@18#!.
Of these,ss is associated with the subcortical driving sign

FIG. 2. Solutions of the dispersion relation~28! with the param-
eters as in Table I andfs590 s21 for 0<kre<5. For each mode
kre50 is marked with a square. Two sets of roots are shown. O
set ~solid lines! consists of solutions to the eighth-order dispers
relation ~28!, of which six roots are shown. An additional pair o
roots with v'6kv2 ig i is not shown sinceg i'105 s21. Super-
imposed on these roots are the solutions~shown with crosses! of the
fourth-order dispersion relation derived from Eq.~30!. In this figure
and subsequently we use the labelsa and g to suggest the
asymptotic damping rates2 ia or 2 ige,i . The subscriptse and i
indicate whether the root concerned is most sensitive to excita
or inhibitory parameters. Roots occur in pairs, so each membe
arbitrarily assigned a superscript1 or 2. The range of the absciss
is 6300 s21 or 648 Hz, to match that of EEGs.
-

k,

d-

s
of
-

I

ry
i-
ed
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and so does not appear in dispersion relations. Also,si andu i
do not need to be considered explicitly due to the symme
between excitatory and inhibitory quantities. Consequen
only modulations ofse and ue need to be investigated in
what follows.

As to which variables drive modulations, there are ag
mathematical and physiological reasons for limiting the p
sibilities. First, Eqs.~14!–~17! are similar with respect to
excitatory and inhibitory neurons. This means that we ne
to derive dispersion relations for driving variables belongi
to only one class of neuron, as the others can be obtaine
symmetry. This means that feedback mediated byPi ,Qi ,Vi ,
andf i need not be explicitly considered here. Second,Pe is
an intermediate construct that is not directly identifiable w
any physiological quantity, so it is not an appropriate drivi
variable. Third, Eq.~16! shows that small-amplitude pertu
bations ofQe andVe are proportional to each other. For th
reason we do not considerQe in what follows. That leaves
fe andVe as the driving variables to be considered below

The final matter is to decide the form ofH(t) in Eq. ~33!.
For n51,2 we useH(t)5hntn21exp(2ht) when t>0 and
zero otherwise. The rate constanth characterizing feedback
is assumed positive. This form ofH(t) implies a simple
differential equivalent of Eq.~33!:

S 1

h

d

dt
11D n

@x~r ,t !2x~0!#5x~1!@x~r ,t !2x~0!#. ~34!

Substitutingse andue for x, andfe andVe for x in Eq.
~33! gives

se~r ,t !5se
~0!1se

~1!H~ t ! ^ @fe~r ,t !2fe
~0!#, ~35a!

se~r ,t !5se
~0!1se

~1!H~ t ! ^ @Ve~r ,t !2Ve
~0!#, ~35b!

ue~r ,t !5ue
~0!1ue

~1!H~ t ! ^ @fe~r ,t !2fe
~0!#, ~35c!

ue~r ,t !5ue
~0!1ue

~1!H~ t ! ^ @Ve~r ,t !2Ve
~0!# ~35d!

as the four cases to be considered, which we refer to as t
A2D, respectively. The reference valuesfe

(0) andVe
(0) are

always chosen to be steady state values of the correspon
variables, which is not strictly necessary but has the pract
attraction thatse

(0) andue
(0) have the nominal values in Tabl

I.

IV. DISPERSION RELATIONS WITH FEEDBACK

Here we examine the general characteristics of the f
classes of feedback through the corresponding dispersion
lations and contrast them with the feedback-free results
Sec. II. The transfer functions resulting from Eqs.~35a!–
~35d! are

fe

fs
5

GesL~Di2I isGii L !

De~Di2Gii L !2GeeL~Di2I ieGii L !FA
, ~36a!

fe

fs
5

GesL~Di2I isGii L !

De~Di2Gii L !FB2GeeL~Di2I ieGii L !
, ~36b!
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fe

fs
5

GesL~Di2I isGii L !

~De2FC!~Di2Gii L !2GeeL~Di2I ieGii L !
,

~36c!

fe

fs
5

GesL~Di2I isGii L !

De~Di2Gii L !/FD2GeeL~Di2I ieGii L !
, ~36d!

respectively, whereDe,i(k,v) and L(v) are given by Eqs.
~18! and ~19!. @The Appendix contains a derivation of Eq
~36a! and the other transfer functions can be derived si
larly.# The present transfer functions differ from th
feedback-free case~22! only in the factorsFA2FD ,

FA~v!511hAH~v!, ~37a!

FB~v!512hBH~v!L~v!, ~37b!

FC~v!5hCH~v!, ~37c!

FD~v!511hDH~v!, ~37d!

where

hA5~se
~1!/se

~0!!fe
~0! , ~38a!

hB5 l eNeese
~1!fe

~0! , ~38b!

hC52reue
~1! , ~38c!

hD52ue
~1! ~38d!

are the dimensionless feedback strengths. The quantitiesse
(1)

and ue
(1) , introduced in Eqs.~35!, can be evaluated whe

specific physiological feedback mechanisms are cho
However, in the present context, which aims to be indep
dent of such choices, it is more convenient to present res
in terms ofhA2hD . These values will be referred to gene
cally ashM in situations where no confusion should res
and will be considered to be free parameters of either s
The definitions ofhA2hD have been chosen so thathM.0
corresponds to positive feedback andhM,0 corresponds to
negative feedback. The remaining feedback quantity
H(v): According to the choice forH(t) made in Sec. III,

H~v!5~12 iv/h!2n. ~39!

.
For hM50, Eqs. ~36a!–~36d! each reduces to Eq.~22!,

but for hMÞ0, Eqs.~36a!–~36d! are less convenient for ana
lytical investigation. However, the simplificationGii 50 has
been found to result in adequate approximations to the e
solutions for parameters in physiologically reasonable ran
and gives

fe /fs5GesH
21/@H21~L21De2Gee!2hAGee#,

~40a!

fe /fs5GesH
21/@H21~L21De2Gee!2hBDe#,

~40b!

fe /fs5GesH
21/@H21~L21De2Gee!2hCL21#,

~40c!
i-

n.
-

lts

t
n.

is

ct
es

fe /fs5
Ges~H211hD!

@H21~L21De2Gee!2hDGee#
, ~40d!

where H215(12 iv/h)n,L215(12 iv/a)2, and De5(1
2 iv/ge)

21k2r e
2 . A further simplification has been mad

here and henceforth by settinga5b, which is consistent
with physiology @16#. In order to understand the casehM
Þ0, we consider separately two extremes ofh:h@a,ge and
0&h!a,ge .

A. Fast feedback:h@a,ge

In examining fast feedback, it is convenient to exami
typesA andD first and then typesB andC.

1. Types A and D feedback

The transfer functions~40a! and~40d! both imply normal
modes given by the roots of

H21~L21De2Gee!2hAGee50, ~41!

so the two cases can be dealt with as one. If we substi
Eqs.~18!, ~19!, and~39! into Eq. ~41! we find

~12 iv/h!n$~12 iv/a!2@~12 iv/ge!
21k2r e

2#2Gee%

2hAGee50. ~42!

This is easily solved in the trivial caseGee50, resulting in
roots at2 ih,2 ia, and 6kv2 ige . However, in practice,
Gee may be;1, which is of the same order as all other term
in Eq. ~42!, so the effect ofGee andhA must be considered in
more detail.

One can show that the roots nearv52 ih are only
weakly affected byGee andhA by substitutingv52 ih1e
into Eq.~42! and retaining only the lowest order ofe/h. We
find e/h' i (hAGeea

2ge
2/h4)1/n and for h@a,ge these are

rapidly damped modes of little relevance to EEGs. The
maining roots all haveuvu!h so the term H215(1
2v/h)n'1 and a much simplified dispersion relation r
sults. Then, in the limitk→`, the solutions are simplyv
56kv2 ige ,2 ia ~as in the feedback-free case! and when
k50 the solutions are

v52 i S a1ge

2 D6A6ageA~11hA!Gee2S a2ge

2 D 2

,

~43!

where all four combinations of signs are implied. Only t
latter limit depends onhA . While hA>21 results in four
solutions that are similar to those described in Sec. II D
being of the form 2 i (a1ge)/26(purely real values) or
2 i (a1ge)/26(purely imaginary values), the alternativ
hA,21 gives qualitatively different solutions of the form
2 i (a1ge)/26Acomplex values and 2 i (a1ge)/2
6A(complex values)* . This has an important consequen
for the modeling of electrocortical activity: Purely dampe
modes of the basic model are transformed into modes
are guaranteed to be oscillatory and that may be ligh
damped.

Figure 3 shows solutions of the typeA dispersion relation
for several values ofhA and a range ofk. Solutions of thefull
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dispersion relation are shown, rather than those of the
proximation~42!, to demonstrate that conclusions based
the approximate form also apply to the exact dispersion
lation. Figure 3~a!, in which feedback is weak, has the sam
general appearance as Fig. 2, while Figs. 3~b! and 3~c! show
solutions for stronger feedback. As suggested by Eq.~43!,
the latter are characterized by the absence of purely dam
roots. Of particular interest is the progressively increas
damping of the nearly unstable root labeledae

2 as hA be-
comes more negative and the simultaneous destabilizatio
the roots labeledge

6 . The latter roots, identified as propaga
ing wave modes by their asymptotically constant group
locities, eventually become unstable when they enter the
per half of the complex plane.

The feedback parametersh andn have only a weak effec
on solutions. The reason for this is most evident from E
~42!: For v!h the term (12 iv/h)n'1 whatever the values
of h and n. In physical terms, the high rate of feedba
means thatse is modulated proportionately to, and in pha

FIG. 3. Effect of fast (h55000 s21), first order typeA feed-
back. The roots are solutions to the full dispersion relation obtai
from Eq. ~36a!. The parameter values are as in Table I andfs

590 s21, for 0<kre<5; k50 is indicated by a square unles
there is little dependence onk. One root with Im(v);2h and a
pair of roots with Im(v);2g i are not shown as they are too ra
idly damped to be of relevance.~a! hA520.8, ~b! hA521, and~c!
hA523.
p-
n
-

ed
g

of

-
p-

.

with fe , altering the total gain fromGee to (11hA)Gee and
all modal changes flow from this effective alteration of t
gain.

2. Types B and C feedback

The approximate dispersion relations for fast feedback
types B and C are obtained from the denominators of E
~36b! and ~36c! if we set I ie50, Gii 50, Di51, andH21

51 as before. This gives, respectively,

@~12 iv/a!22hB#@~12 iv/ge!
21k2r e

2#2Gee50,
~44!

~12 iv/a!2@~12 iv/ge!
21k2r e

22hC#2Gee50. ~45!

Although Eqs.~44! and ~45! are similar to Eq.~42! in
being independent ofh and n, they have different depen
dences onhM . For hM50, solutions are as for the bas
model without feedback, but asuhMu increases,Gee becomes
negligible and the equations simplify accordingly. The so
tions of Eq.~44! are thenv52 ia(16AhB) and v56kv
2 ige . Similarly, the solutions of Eq.~45! approachv
52 ia andv52 ige6geAk2r e

22hC. They are markedae
6

and ge
6 , respectively, in Fig. 4. The exact dispersion re

tions also have a pair of rootsai
6 nearv52 ia, a pairgi

6

that is symmetrically placed around2 ig i , and one or two
roots ~depending onn) near2 ih. All but the first pair are
too heavily damped to appear in Fig. 4 and are not of r
evance to EEG for the same reason.

Figure 4~a! and 4~b! shows roots of the dispersion rela
tions for feedback of typesB and C. In these examples
uhMu.Gee so thathM has a particularly strong influence o
the roots labeledae,i

6 in Fig. 4~a! and on the roots labeledge
6

in Fig. 4~b!. In both cases, varyinghM moves the affected
roots laterally while not greatly affecting their imagina
parts. The rate constantsa andge are the other determinant
of the root locations. Figure 4~c! illustrates this point by
showing the roots for the same system as in Fig. 4~a! but
with a reduced from 200 s21 to 50 s21 in excitatory neu-
rons, thereby scaling the rootsae

6 by the same factor: Root
at real frequencies of6350s21(655 Hz) move to
690 s21(614 Hz). The roots labeledge

6 can likewise be
scaled thoughge .

B. Slow feedback:h!a,ge

Here we are mainly concerned with roots lying near t
origin, as the remaining roots prove to be scarcely affec
by slow feedback. The reason for this is thatuvu;a and
ge@h for all roots far from the origin, so the magnitude o
H215(12 iv/h)n;(2 iv/h)n is large compared to the fi
nal terms in the denominators of Eqs.~40a!–~40d!. Thus the
final terms can be dropped and the dispersion relations
the four types of feedback become identical, w
(2 iv/h)n(L21De2Gee)50, which leads to the sam
modes as in the feedback-free case~31!.

Of the roots near the origin, one is expected from t
feedback-free case~the root labeledae

2 in Fig. 2! and n
others occur as a result of feedback (n51,2). The location
of each is simply inferred only in the limithM→0. In this
case the last term in the denominator of Eqs.~40a!–~40d!

d
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vanishes, givingH21(L21De2Gee)50 as the dispersion re
lation. Then the factorH2150 implies a root with v
52 ih. ~If n52 it will be a double root.!

Turning now tohMÞ0, feedbacks of typesA andD will
be considered first and then the results for typesB and C
feedback will be summarized.

1. Types A and D feedback

By assuming H21512 iv/h and setting L215(1
2 iv/a)2, as in Sec. IV A, the dispersion relation implied b
Eq. ~40a! becomes

~12 iv/h!@~12 iv/a!2De2Gee#2hMGee50, ~46!

where De5(12 iv/ge)
21k2r e

2 and hM5hA or hD in the
present context. Sinceuvu!a,ge , Eqs.~46! becomes

FIG. 4. Fast (h55000 s21), first-order feedback of typesB and
C. The roots below are solutions to the full dispersion relatio
obtained from Eqs.~36b! and~36c!. The parameter values are as
Table I,fs590 s21, hB5hC523, and 0<kre<5. Squares indi-
catek50 unless the mode has little dependence onk. ~a! Type B
feedback, in which two roots labeledge

6 first converge ask in-
creases and then diverge.~b! TypeC feedback.~c! TypeB feedback
as in ~a!, but with a5b550 s21 in excitatory neurons.
0511k2r e
22~11hM !Gee2 i F11k2r e

22Gee1~11k2r e
2!

3
2h

a
1

2h

ge
Gvh2F ~11k2r e

2!
2h

a
1

2h

ge
Gv2

h2 , ~47!

after discarding terms that are second order or highe
v/a, v/ge , h/a, andh/ge . Figure 5 demonstrates that a
kre increases, a pair of oscillatory roots approach each o
along opposite arcs, merge, and then separate as p
damped roots, the one labelede tending asymptotically to
2 ih and the other labeledae

2 tending to2 ia. The latter is
similar to the root of the same name in previous figur
while the locus of roots labelede and the unlabeled arcs aris
only because of feedback.

The casen52 is more difficult to deal with analytically;
however, numerical results show similar behavior to then
51 case, namely, oscillatory roots whenhM is sufficiently

s
FIG. 5. Effect of slow (h51 s21), first-order feedback of type

A or D. The values of other parameters are as in Table I andfs

590 s21. The roots below are solutions of the dispersion relat
implied by Eq. ~36a!. Solutions are shown for the range 0<kre

<5. In those cases where there are lightly damped oscilla
modes, these merge and become purely damped modes ask in-
creases and approach2 ih and 2 ia in the limit k→`. ~a! hM

510, ~b! hM5210, and~c! hM52100.
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negative and purely damped roots otherwise. The two ro
arising from the feedback whenn52 tend to cluster closer to
the origin than whenn51, but otherwise the results are sim
lar.

2. Types B and C feedback

Starting with the transfer functions~40b! and ~40c!, we
obtain the dispersion relationsH21(L21De2Gee)2hBDe
50 andH21(L21De2Gee)2hCL2150 for typesB andC
feedback, respectively. These are similar to the case of ty
A and D feedback,H21(L21De2Gee)2hAGee50, both
when v;h ~becauseDe'L21'1;Gee) and whenv@h
~becausehAGee, hBDe , and hCL21 are negligible!. As a
result, roots of the dispersion relations are similar to th
found for typesA and D feedback and Fig. 5 gives an ad
equate illustration of most aspects of the dispersion for ty
B andC feedback.

V. SUMMARY

Feedback is likely to be a requirement of models t
attempt to model EEGs. In this paper we investigate the
of local feedback by generalizing our previous continuu
model of cortical electrical activity@11#.

In Sec. II we derive transfer functions that are expres
in terms of basic physiological quantities, such as firi
threshold, synaptic response sizes, firing rates, and m
brane potentials. This allows local feedback to be classi
into just four fundamental classes identified in Sec. III. The
four classes describe linear modulation of synaptic stren
and firing thresholds by incoming firing rate or transme
brane potential. It is argued that other possibilities either
not indicated physiologically or are redundant mathem
cally in the context of our model. The four feedback clas
are thus fundamental.

Section IV examines the properties of the four trans
functions to investigate the effects of these feedbacks on
system’s characteristics. Several results emerge: ClassA
andD of feedback have identical dispersion relations, fe
back with a rate constanth introduces roots in the vicinity o
2 ih, and ask→` other modes tend to valuesv56kv
2 ige ,2 ia, which are independent of feedback and det
mined instead bya the dendritic damping rate andge the
damping rate of long-range propagation.

In view of the possible significance of feedback-induc
modes to the generation or modulation of EEGs, we a
looked for modes that were lightly damped. They were fou
to occur in three situations.

~i! Fast feedback of typesA and D ~incoming firing rate
modulating synaptic efficacy and outgoing firing rate mod
lating thresholds! caused existing oscillatory roots to becom
lightly damped ~see Fig. 3!. A condition for such lightly
damped modes to exist is that the strength of feedbac
sufficiently negative. This could occur if an increase in in
coming firing rate causes a decrease in the synaptic effic
or if an increase in outgoing firing rate causes an increas
firing threshold.

~ii ! When there is fast negative feedback of typeB and the
dendritic rate constant is less than the damping rate of pro
gating waves, a lightly damped mode arises whose freque
increases with the strength of negative feedback and has
ts
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dependence on wave number@see Fig. 4~c!#.
~iii ! With slow feedback of any typeA2D there are ad-

ditional modes, all of which are lightly damped. Agai
negative feedback is a condition that they be oscillatory a
the frequency increases with the strength of negative fe
back ~see Fig. 5!.

These three kinds of lightly damped modes are dis
guished by their dispersion characteristics: Ask increases,v
increases in the first kind of resonance, remains almost c
stant in the second, and decreases in the third.

All the above results are based in the presumption m
in Eqs. ~35! that feedback affects eitherse or ue ; however,
the same methods can be applied to infer the effects
modulation of inhibitory parameters. Results are presente
terms of dimensionless feedback strengthshM ; however,
Eqs. ~38! provide the means to derive numerical results
particular physiological processes.

Having identified and characterized several forms of fe
back that are potentially significant in the large scale activ
of the cortex, it is now possible to combine the expressio
presented here with the rate constants and strengths of
cific physiological mechanisms and thereby obtain phy
ologically based transfer functions and dispersion relatio
Then numerical estimates for the frequencies of the m
lightly damped modes will follow and identifications may b
possible with characteristic EEG rhythms, such as those n
10 Hz ~known asa), 15–30 Hz (b), and 40 Hz (g). It may
also be possible to obtain experimental evidence
frequency–wave-number relations resembling those in
present paper. In any case, the present work helps to ma
connection between macroscopic quantities and cellular le
quantities, which can guide the development of more ac
rate models of EEGs, and eventually lead to more thoro
and clinically relevant analysis of EEGs.
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APPENDIX: MODULATION OF se BY fe

The transfer equation for typeA feedback is obtained
from Eqs.~1!, ~15!–~17!, and~35a!, as shown below. Trans
fer equations for casesB–D can be derived similarly.

For linear modulation ofse by fe(r ,t) we begin by as-
suming, in accordance with Eq.~35a!, that

se~r ,t !'se
~0!1se

~1!H~ t ! ^ @fe~r ,t !2fe
~0!#, ~A1!

so that Eq.~1a! becomes

Pe~r ,t !'Neese
~0!fe~r ,t !1Neese

~1!fe
~0!H~ t !

^ @fe~r ,t !2fe
~0!#1Neisif i~r ,t !1Nesssfs~r ,t !

~A2!

to first order in deviations of the variables from their stea
state values. The Fourier transform of Eq.~A2! is
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Pe~k,v!5Nee@se
~0!1se

~1!fe
~0!H~v!#fe~k,v!

1Neisif i~k,v!1Nesssfs~k,v!, ~A3!

and similarly forPi(k,v),

Pi~k,v!5Nie@se
~0!1se

~1!fe
~0!H~v!#fe~k,v!1Nii sif i~k,v!

1Nisssfs~k,v!. ~A4!

Equations~A3!, ~A4!, and ~15!–~17! can then be used to
derive a transfer function. As the only effect of modulati
M

.

of se by fe is to multiply se by factor 1
1(se

(1)/se
(0))fe

(0)H(v) in ~14!, we immediately see from Eq
~22! that the transfer function is

fe

fs
5

GesL~Di2I isGii L !

De~Di2Gii L !2GeeL~Di2I ieGii L !FA
, ~A5!

where we define the feedback factorFA by

FA~v!511~se
~1!/se

~0!!fe
~0!H~v!. ~A6!
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